04. Proper Charge Methods 4

GUIDE: Batteries in a portable world. 4. Proper Charge Methods 4

It appears that you are using AdBlocking software. The cost of running this website is covered by advertisements. If you like it please feel free to a small amount of money to secure the future of this website.

<< Previous page  INDEX  Next page >>

More advanced NiCd chargers sense the rate of temperature increase, defined as dT/dt, or the change in temperature over charge time, rather than responding to an absolute temperature (dT/dt is defined as delta Temperature / delta time). This type of charger is kinder to the batteries than a fixed temperature cut-off, but the cells still need to generate heat to trigger detection. To terminate the charge, a temperature increase of 1°C (1.8°F) per minute with an absolute temperature cut-off of 60°C (140°F) works well. Because of the relatively large mass of a cell and the sluggish propagation of heat, the delta temperature, as this method is called, will also enter a brief overcharge condition before the full-charge is detected. The dT/dt method only works with fast chargers.

Harmful overcharge occurs if a fully charged battery is repeatedly inserted for topping charge. Vehicular or base station chargers that require the removal of two-way radios with each use are especially hard on the batteries because each reconnection initiates a fast-charge cycle. This also applies to laptops that are momentarily disconnected and reconnected to perform a service. Likewise, a technician may briefly plug the laptop into the power source to check a repeater station or service other installations. Problems with laptop batteries have also been reported in car manufacturing plants where the workers move the laptops from car to car, checking their functions, while momentarily plugging into the external power source. Repetitive connection to power affects mostly ‘dumb’ nickel-based batteries. A ‘dumb’ battery contains no electronic circuitry to communicate with the charger. Li-ion chargers detect the SoC by voltage only and multiple reconnections will not confuse the charging regime.

More precise full charge detection of nickel-based batteries can be achieved with the use of a micro controller that monitors the battery voltage and terminates the charge when a certain voltage signature occurs. A drop in voltage signifies that the battery has reached full charge. This is known as Negative Delta V (NDV).

NDV is the recommended full-charge detection method for ‘open-lead’ NiCd chargers because it offers a quick response time. The NDV charge detection also works well with a partially or fully charged battery. If a fully charged battery is inserted, the terminal voltage raises quickly, then drops sharply, triggering the ready state. Such a charge lasts only a few minutes and the cells remain cool. NiCd chargers based on the NDV full charge detection typically respond to a voltage drop of 10 to 30mV per cell. Chargers that respond to a very small voltage decrease are preferred over those that require a larger drop.

To obtain a sufficient voltage drop, the charge rate must be 0.5C and higher. Lower than 0.5C charge rates produce a very shallow voltage decrease that is often difficult to measure, especially if the cells are slightly mismatched. In a battery pack that has mismatched cells, each cell reaches the full charge at a different time and the curve gets distorted. Failing to achieve a sufficient negative slope allows the fast-charge to continue, causing excessive heat buildup due to overcharge. Chargers using the NDV must include other charge-termination methods to provide safe charging under all conditions. Most chargers also observe the battery temperature.

The charge efficiency factor of a standard NiCd is better on fast charge than slow charge. At a 1C charge rate, the typical charge efficiency is 1.1 or 91 percent. On an overnight slow charge (0.1C), the efficiency drops to 1.4 or 71 percent.

At a rate of 1C, the charge time of a NiCd is slightly longer than 60 minutes (66 minutes at an assumed charge efficiency of 1.1). The charge time on a battery that is partially discharged or cannot hold full capacity due to memory or other degradation is shorter accordingly. At a 0.1C charge rate, the charge time of an empty NiCd is about 14 hours, which relates to the charge efficiency of 1.4.

During the first 70 percent of the charge cycle, the charge efficiency of a NiCd battery is close to 100 percent. Almost all of the energy is absorbed and the battery remains cool. Currents of several times the C-rating can be applied to a NiCd battery designed for fast charging without causing heat build-up. Ultra-fast chargers use this unique phenomenon and charge a battery to the 70 percent charge level within a few minutes. The charge continues at a lower rate until the battery is fully charged.

Once the 70 percent charge threshold is passed, the battery gradually loses ability to accept charge. The cells start to generate gases, the pressure rises and the temperature increases. The charge acceptance drops further as the battery reaches 80 and 90 percent SoC. Once full charge is reached, the battery goes into overcharge. In an attempt to gain a few extra capacity points, some chargers allow a measured amount of overcharge. Figure 4-1 illustrates the relationship of cell voltage, pressure and temperature while a NiCd is being charged.

Ultra-high capacity NiCd batteries tend to heat up more than the standard NiCd if charged at 1C and higher. This is partly due to the higher internal resistance of the ultra-high capacity battery. Optimum charge performance can be achieved by applying higher current at the initial charge stage, then tapering it to a lower rate as the charge acceptance decreases. This avoids excess temperature rise and yet assures fully charged batteries.

Figure 4-1: Charge characteristics of a NiCd cell.
These cell voltage, pressure and temperature characteristics are similar in a NiMH cell.

Interspersing discharge pulses between charge pulses improves the charge acceptance of nickel-based batteries. Commonly referred to as ‘burp’ or ‘reverse load’ charge, this charge method promotes high surface area on the electrodes, resulting in enhanced performance and increased service life. Reverse load also improves fast charging because it helps to recombine the gases generated during charge. The result is a cooler and more effective charge than with conventional DC chargers.

Charging with the reverse load method minimizes crystalline formation. The US Army Electronics Command in Fort Monmouth, NJ, USA, had done extensive research in this field and has published the results. (See Figure 10-1, Crystalline formation on NiCd cell). Research conducted in Germany has shown that the reverse load method adds 15 percent to the life of the NiCd battery.

After full charge, the NiCd battery is maintained with a trickle charge to compensate for the self-discharge. The trickle charge for a NiCd battery ranges between 0.05C and 0.1C. In an effort to reduce the memory phenomenon, there is a trend towards lower trickle charge currents.

<< Previous page  INDEX  Next page >>


© 1998-2021 – Nicola Asuni - Tecnick.com - All rights reserved.
about - disclaimer - privacy