The DFT Matrix

GUIDE: Mathematics of the Discrete Fourier Transform (DFT). The DFT Matrix

It appears that you are using AdBlocking software. The cost of running this website is covered by advertisements. If you like it please feel free to a small amount of money to secure the future of this website.

<< Previous page  TOC  INDEX  Next page >>

DFT Matrix

The following example reinforces the discussion of the DFT matrix. We can simply create the DFT matrix in Matlab by taking the FFT of the identity matrix. Then we show that multiplying by the DFT matrix is equivalent to the FFT:

>> eye(4)
ans =
     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1


>> S4 = fft(eye(4)) ans = 1.0000 1.0000 1.0000 1.0000
1.0000 0.0000 - 1.0000i -1.0000 0.0000 + 1.0000i 1.0000 -1.0000 1.0000 -1.0000
1.0000 0.0000 + 1.0000i -1.0000 0.0000 - 1.0000i
>> S4’ * S4 % Show that S4’ = inverse DFT (times N=4) ans = 4.0000 0.0000 0 0.0000 0.0000 4.0000 0.0000 0.0000 0 0.0000 4.0000 0.0000 0.0000 0.0000 0.0000 4.0000
>> x = [1; 2; 3; 4] x = 1 2 3 4
>> fft(x) ans = 10.0000
-2.0000 + 2.0000i -2.0000
-2.0000 - 2.0000i >> S4 * x ans = 10.0000
-2.0000 + 2.0000i -2.0000
-2.0000 - 2.0000i

<< Previous page  TOC  INDEX  Next page >>

 

© 1998-2017 – Nicola Asuni - Tecnick.com - All rights reserved.
about - disclaimer - privacy