Figure 7.2

GUIDE: Mathematics of the Discrete Fourier Transform (DFT). Figure 7.2

It appears that you are using AdBlocking software. The cost of running this website is covered by advertisements. If you like it please feel free to a small amount of money to secure the future of this website.

<< Previous page  TOC  INDEX  Next page >>

Figure 7.2

Below is the Matlab for Fig. 7.2:

N=8;
fs=1;


n = [0:N-1]; % row t = [0:0.01:N]; % interpolated k=fliplr(n)’ - N/2; fk = k*fs/N; wk = 2*pi*fk; clf; for i=1:N subplot(N,2,2*i-1); plot(t,cos(wk(i)*t)) axis([0,8,-1,1]); hold on; plot(n,cos(wk(i)n),’’) if i==1 title(‘Real Part’); end; ylabel(sprintf(‘k=%d’,k(i))); if i==N xlabel(‘Time (samples)’); end; subplot(N,2,2*i); plot(t,sin(wk(i)*t)) axis([0,8,-1,1]); hold on; plot(n,sin(wk(i)n),’’) ylabel(sprintf(‘k=%d’,k(i))); if i==1 title(‘Imaginary Part’); end; if i==N xlabel(‘Time (samples)’); end; end

<< Previous page  TOC  INDEX  Next page >>

 

© 1998-2017 – Nicola Asuni - Tecnick.com - All rights reserved.
about - disclaimer - privacy