Figuring Out Sampling Theory by Playing Around with Complex Sinusoids

GUIDE: Mathematics of the Discrete Fourier Transform (DFT). Figuring Out Sampling Theory by Playing Around with Complex Sinusoids

It appears that you are using AdBlocking software. The cost of running this website is covered by advertisements. If you like it please feel free to a small amount of money to secure the future of this website.

<< Previous page  TOC  INDEX  Next page >>


Figuring Out Sampling Theory by Playing Around with Complex Sinusoids

Consider $z_0\, with $\. Then we can write$z_0$ in polar form as

\

where $\, $\, and $T_s$ are real numbers.

Forming a geometric sequence based on $z_0$ yields the sequence

\

where $t_n\. Thus, successive integer powers of $z_0$produce a sampled complex sinusoid with unit amplitude, and zero phase. Defining the sampling interval as $T_s$ in seconds provides that $\ is the radian frequency in radians per second.



Subsections

<< Previous page  TOC  INDEX  Next page >>

 

© 1998-2017 – Nicola Asuni - Tecnick.com - All rights reserved.
about - disclaimer - privacy