The DFT Matrix

GUIDE: Mathematics of the Discrete Fourier Transform (DFT) - Julius O. Smith III. The DFT Matrix

It appears that you are using AdBlocking software. The cost of running this website is covered by advertisements. If you like it please feel free to a small amount of money to secure the future of this website.

NOTE: THIS DOCUMENT IS OBSOLETE, PLEASE CHECK THE NEW VERSION: "Mathematics of the Discrete Fourier Transform (DFT), with Audio Applications --- Second Edition", by Julius O. Smith III, W3K Publishing, 2007, ISBN 978-0-9745607-4-8. - Copyright © 2017-09-28 by Julius O. Smith III - Center for Computer Research in Music and Acoustics (CCRMA), Stanford University

<< Previous page  TOC  INDEX  Next page >>

DFT Matrix

The following example reinforces the discussion of the DFT matrix. We can simply create the DFT matrix in Matlab by taking the FFT of the identity matrix. Then we show that multiplying by the DFT matrix is equivalent to the FFT:

>> eye(4)
ans =
     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

>> S4 = fft(eye(4)) ans = 1.0000 1.0000 1.0000 1.0000
1.0000 0.0000 - 1.0000i -1.0000 0.0000 + 1.0000i 1.0000 -1.0000 1.0000 -1.0000
1.0000 0.0000 + 1.0000i -1.0000 0.0000 - 1.0000i
>> S4’ * S4 % Show that S4’ = inverse DFT (times N=4) ans = 4.0000 0.0000 0 0.0000 0.0000 4.0000 0.0000 0.0000 0 0.0000 4.0000 0.0000 0.0000 0.0000 0.0000 4.0000
>> x = [1; 2; 3; 4] x = 1 2 3 4
>> fft(x) ans = 10.0000
-2.0000 + 2.0000i -2.0000
-2.0000 - 2.0000i >> S4 * x ans = 10.0000
-2.0000 + 2.0000i -2.0000
-2.0000 - 2.0000i

<< Previous page  TOC  INDEX  Next page >>

 

© 1998-2023 – Nicola Asuni - Tecnick.com - All rights reserved.
about - disclaimer - privacy