Example 5: Use of the Blackman Window

GUIDE: Mathematics of the Discrete Fourier Transform (DFT) - Julius O. Smith III. Example 5: Use of the Blackman Window

It appears that you are using AdBlocking software. The cost of running this website is covered by advertisements. If you like it please feel free to a small amount of money to secure the future of this website.

NOTE: THIS DOCUMENT IS OBSOLETE, PLEASE CHECK THE NEW VERSION: "Mathematics of the Discrete Fourier Transform (DFT), with Audio Applications --- Second Edition", by Julius O. Smith III, W3K Publishing, 2007, ISBN 978-0-9745607-4-8. - Copyright © 2017-09-28 by Julius O. Smith III - Center for Computer Research in Music and Acoustics (CCRMA), Stanford University

<< Previous page  TOC  INDEX  Next page >>

Example 5: Use of the Blackman Window

Now let's apply this window to the sinusoidal data:

% Use the Blackman window on the sinusoid data
xw = [w .* cos(2*pi*n*f*T),zeros(1,(zpf-1)*N)]; % windowed, zero-padded data
X = fft(xw);                                    % Smoothed, interpolated spectrum

% Plot time data figure(6); subplot(2,1,1); plot(xw);
title(‘Windowed, Zero-Padded, Sampled Sinusoid’); xlabel(‘Time (samples)’); ylabel(’Amplitude’); text(-50,1,‘a)’); hold off;
% Plot spectral magnitude in the best way spec = 10*log10(conj(X).X); % Spectral magnitude in dB spec = max(spec,-60ones(1,nfft)); % clip to -60 dB subplot(2,1,2); plot(fninf,fftshift(spec),’-’); axis([-0.5,0.5,-60,40]); grid; title(‘Smoothed, Interpolated, Spectral Magnitude (dB)’); xlabel(‘Normalized Frequency (cycles per sample))’); ylabel(‘Magnitude (dB)’); text(-.6,40,‘b)’); print -deps eps/xw.eps;
Figure 9.6:Effect of the Blackman window on the sinusoidal data segment.
\

<< Previous page  TOC  INDEX  Next page >>

 

© 1998-2023 – Nicola Asuni - Tecnick.com - All rights reserved.
about - disclaimer - privacy