NOTE: THIS DOCUMENT IS OBSOLETE, PLEASE CHECK THE NEW VERSION: "Mathematics of the Discrete Fourier Transform (DFT), with Audio Applications --- Second Edition", by Julius O. Smith III, W3K Publishing, 2007, ISBN 978-0-9745607-4-8. - Copyright © 2017-09-28 by Julius O. Smith III - Center for Computer Research in Music and Acoustics (CCRMA), Stanford University
<< Previous page TOC INDEX Next page >>
Figure 7.2
Below is the Matlab for Fig. 7.2:
N=8; fs=1;
n = [0:N-1]; % row t = [0:0.01:N]; % interpolated k=fliplr(n)’ - N/2; fk = kfs/N; wk = 2pifk; clf; for i=1:N subplot(N,2,2i-1); plot(t,cos(wk(i)t)) axis([0,8,-1,1]); hold on; plot(n,cos(wk(i)n),’’) if i==1 title(‘Real Part’); end; ylabel(sprintf(‘k=%d’,k(i))); if i==N xlabel(‘Time (samples)’); end; subplot(N,2,2i); plot(t,sin(wk(i)*t)) axis([0,8,-1,1]); hold on; plot(n,sin(wk(i)n),’’) ylabel(sprintf(‘k=%d’,k(i))); if i==1 title(‘Imaginary Part’); end; if i==N xlabel(‘Time (samples)’); end; end