**NOTE: THIS DOCUMENT IS OBSOLETE, PLEASE CHECK THE NEW
VERSION:** "Mathematics of the Discrete
Fourier Transform (DFT), with Audio Applications --- Second
Edition", by Julius
O. Smith III, W3K
Publishing, 2007, ISBN 978-0-9745607-4-8. - Copyright ©
*2017-09-28* by Julius O. Smith III -
Center for Computer Research
in Music and Acoustics (CCRMA), Stanford University

**<<
Previous page TOC INDEX Next
page >>**

## Why Exponentials are Important

Exponential

decayoccurs naturally when a quantity is decaying at a rate which is proportional to how much is left. In nature, alllinear resonators, such as musical instrument strings and woodwind bores, exhibit exponential decay in their response to a momentary excitation. As another example, reverberant energy in a room decays exponentially after the direct sound stops. Essentially allundriven oscillationsdecay exponentially (provided they are linear and time-invariant). Undriven means there is no ongoing source of driving energy. Examples of undriven oscillations include the vibrations of a tuning fork, struck or plucked strings, a marimba or xylophone bar, and so on. Examples of driven oscillations include horns, woodwinds, bowed strings, and voice. Driven oscillations must be periodic while undriven oscillations normally are not, except in idealized cases.Exponential

growthoccurs when a quantity is increasing at a rate proportional to the current amount. Exponential growth isunstablesince nothing can grow exponentially forever without running into some kind of limit. Note that a positive time constant corresponds to exponential decay, while a negative time constant corresponds to exponential growth. In signal processing, we almost always deal exclusively with exponential decay (positive time constants).Exponential growth and decay are illustrated in Fig. 5.6.

REMARK: Add figure showing exponential decay and exponential growth

REMARK: RAID Craig’s overheads

REMARK: RAID MMA notebooks (including ComplexExponentials.ma)